27,438 research outputs found

    Finite size and finite temperature studies of the osp(12)osp(1|2) spin chain

    Full text link
    We study a quantum spin chain invariant by the superalgebra osp(12)osp(1|2). We derived non-linear integral equations for the row-to-row transfer matrix eigenvalue in order to analyze its finite size scaling behaviour and we determined its central charge. We have also studied the thermodynamical properties of the obtained spin chain via the non-linear integral equations for the quantum transfer matrix eigenvalue. We numerically solved these NLIE and evaluated the specific heat and magnetic susceptibility. The analytical low temperature analysis was performed providing a different value for the effective central charge. The computed values are in agreement with the numerical predictions in the literature.Comment: 26 pages, 2 figure

    NoSOCS in SDSS. VI. The Environmental Dependence of AGN in Clusters and Field in the Local Universe

    Full text link
    We investigated the variation in the fraction of optical active galactic nuclei (AGN) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z0.1z \le 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGNF_{AGN}) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M>10.6M_* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGNF_{AGN} with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of clustercentric distance we verify that FAGNF_{AGN} is roughly constant for R >> R200_{200}, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behavior for low mass systems (σP650700\sigma_P \lesssim 650-700 km s1^{-1}). However, there is a strong decline in FAGNF_{AGN} for higher mass clusters (>> 700 km s1^{-1}). When comparing the FAGNF_{AGN} in clusters with or without substructure we only find different results for objects at large radii (R >> R200_{200}), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGNF_{AGN} and their phase-space distribution we interpret AGN to be the result of galaxy interactions, favored in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.Comment: 11 pages, 10 figures, Accepted to MNRA

    Mutual information in random Boolean models of regulatory networks

    Full text link
    The amount of mutual information contained in time series of two elements gives a measure of how well their activities are coordinated. In a large, complex network of interacting elements, such as a genetic regulatory network within a cell, the average of the mutual information over all pairs is a global measure of how well the system can coordinate its internal dynamics. We study this average pairwise mutual information in random Boolean networks (RBNs) as a function of the distribution of Boolean rules implemented at each element, assuming that the links in the network are randomly placed. Efficient numerical methods for calculating show that as the number of network nodes N approaches infinity, the quantity N exhibits a discontinuity at parameter values corresponding to critical RBNs. For finite systems it peaks near the critical value, but slightly in the disordered regime for typical parameter variations. The source of high values of N is the indirect correlations between pairs of elements from different long chains with a common starting point. The contribution from pairs that are directly linked approaches zero for critical networks and peaks deep in the disordered regime.Comment: 11 pages, 6 figures; Minor revisions for clarity and figure format, one reference adde
    corecore